| 
					
						 hello admin, please help check my C++ code. it complied but didnt return 0, so n output. The codes are below; //HOWARTH TRANSFORMATION OF BLASIUS BOUNDARY LAYER PRROBLEM // USING 100STEPS i.e t=0.05, //ASSUMING INFINITY=5
  #include<iostream> #include "stdafx.h" #include <stdlib.h> #include <stdio.h> #include <math.h> #include "solvers.h" #include<cmath> #include<iomanip>
  using namespace std; using namespace alglib;
 
  int main(int argc, char **argv) {          int m,n,i,j,k,M;// sum={0};	   double A[300][1], B[300][300], C[300][1], D[300][1], E[300][1], F[300][1], s[300]={0}, f[300], h[300], T[300] ,t,a,b,w,z,y,x, p;// l[300][300]={0},u[300][300]={0},z[300]={0};          cout<<"Aim: To solve Howarth Transformation Boundary Layer problem using nonlinear solver (Newton Raphson method) for: \n"<<" f'''+ f/(h^(-1/3)) f''= 0 \n"<<" h''+ (0.7fh'/h^(-1/3))- 0.28M^(2)*f''^(2)=0  \n"<<endl;    cout<<"Enter number of unknown variables "<<endl;  cin>>m;  cout<<"Enter number of non-linear equations "<<endl;  cin>>n;  cout<<"Enter initial guess value  for f "<<endl;  cin>>a;    cout<<"Enter initial guess value of for h "<<endl;  cin>>b;     for(i=1;i<=99;i++)   {   	f[i]= a;   	h[i]= b;   }   
               /*  198 non-linear functions with 198 unknowns    Fn(f1,f2,f3,f4,h1,h2,h3,h4)    */    A[0][0]= -2*f[1] - 2*f[2] + f[3] + (0.1*f[1]*f[2])/pow(h[1],-1/3) - ((0.2*pow(f[1],2))/pow(h[1],-1/3));  A[1][0]= 2*f[1] - 2*f[3] + f[4] + (0.1*f[1]*f[2])/pow(h[2],-1/3) + (0.1*f[2]*f[3])/pow(h[2],-1/3) - (0.2*pow(f[2],2))/pow(h[2],-1/3);     for(i=3;i<=97;i++)   {  A[i-1][0]= f[i+2]-2*f[i+1]+2*f[i-1]-2*f[i-2] + 0.1*f[i]*f[i+1]/pow(h[i],-1/3) + 0.1*f[i]*f[i-1]/pow(h[i],-1/3) - (0.2*pow(f[i],2))/pow(h[i],-1/3);   }     A[97][0]=  0.1-f[99]+ 2*f[97]-2*f[96] + (0.1*f[98]*f[99])/pow(h[98],-1/3) +(0.1*f[98]*f[97])/pow(h[98],-1/3) - ((0.2*pow(f[98],2))/pow(h[98],-1/3));  A[98][0]=  -f[99]+ 2*f[98]-2*f[97] + (0.005*f[99])/pow(h[99],-1/3) + (0.1*f[99]*f[98])/pow(h[99],-1/3) - (0.1*pow(f[99],2))/pow(h[99],-1/3) + 0.05;  A[99][0]= pow(M,2)*(-2.24*pow(f[1],2) - 0.56*pow(f[2],2)  + 2.24*f[1]*f[2] )- 0.01*h[1] + 0.005*h[2] + (0.0000875*f[1]*h[2])/pow(h[1],-1/3) - (0.000175*f[1])/pow(h[1],-1/3)  + 0.01;    for(i=2; i<=98; i++)  {  A[98+i][0]= pow(M,2)*(-2.24*pow(f[i],2) - 0.56*pow(f[i-1],2) - 0.56*pow(f[i+1],2)  + 2.24*f[i]*f[i-1] - 1.12*f[i-1]*f[i+1] + 2.24*f[i]*f[i+1] )- 0.01*h[i] + 0.005*h[i-1] + 0.005*h[i+1] + (0.0000875*f[i]*h[i+1])/pow(h[i],-1/3) - (0.0000875*f[i]*h[i-1])/pow(h[i],-1/3);  }    A[197][0]= pow(M,2)*(-0.0014 -0.0056*f[98] + 0.0056*f[99] - 0.56*pow(f[98],2) - 0.56*pow(f[99],2)  + 1.12*f[98]*f[99])  + 0.005*h[98] - 0.01*h[99] + (0.0000875*f[99])/pow(h[99],-1/3) - (0.0000875*f[99]*h[98])/pow(h[99],-1/3) + 0.005 ;
     /* Jacobian Matrix elements of Matrix B */    B[0][0]= -2+(0.1*f[2])/pow(h[1],-1/3)-(0.4*f[1])/pow(h[1],-1/3);          B[0][1]= -2+(0.1*f[1])/pow(h[1],-1/3);             B[0][2]= 1;         B[0][3]= 0;       B[0][99]= (0.1*f[1]*f[2]*pow(h[1],-2/3)/3)-(0.2*pow(f[1],2)*pow(h[1],-2/3)/3);     B[0][100]= 0;       B[0][101]= 0;           B[0][102]= 0;    B[1][0]= 2+(0.1*f[2])/pow(h[2],-1/3);                                     B[1][1]= (0.1*f[1])/pow(h[2],-1/3)+ (0.1*f[3])/pow(h[2],-1/3)-(0.4*f[2])/pow(h[2],-1/3);    B[1][2]= -2+ (0.1*f[2])/pow(h[2],-1/3) ;       B[1][3]= 1;       B[1][99]= 0;      B[1][100]= (0.1*f[1]*f[2]*pow(h[2],-2/3)/3) + (0.1*f[2]*f[3]*pow(h[2],-2/3)/3) - (0.2*pow(f[2],2)*pow(h[2],-2/3)/3);      B[1][101]= 0;     B[1][102]= 0;        for(i=3; i<=97; i++)    {    	  B[i-1][i-1]= 0.1*f[i+1]/pow(h[i],-1/3) - 0.4*f[i]/pow(h[i],-1/3) + 0.1*f[i-1]/pow(h[i],-1/3);    	  B[i-1][i-2]= 2 + 0.1*f[i]/pow(h[i],-1/3);    	  B[i-1][i+1] = 1 ;    	  B[i-1][i]= -2 + 0.1*f[i]/pow(h[i],-1/3);    	  B[i-1][i-3] = -2 ;    	  B[i-1][98+i]= (0.1*f[i]*f[i+1]*(h[i],-2/3)/3) - (0.2*(f[i],2)*(h[i],-2/3)/3) + (0.1*f[i]*f[i-1]*(h[i],-2/3)/3);    }
   B[97][95]= -2;    B[97][96]= 2+(0.1*f[98])/pow(h[98],-1/3);        B[97][97]= (0.1*f[99])/pow(h[98],-1/3) + (0.1*f[97])/pow(h[98],-1/3)- (0.4*f[98])/pow(h[98],-1/3);         B[97][98]= -1 + (0.1*f[98])/pow(h[98],-1/3);       B[97][196]= (0.1*f[98]*f[99]*pow(h[98],-2/3)/3) + (0.1*f[98]*f[97]*pow(h[98],-2/3)/3)-(0.2*pow(f[98],2)*pow(h[98],-2/3)/3);      B[98][96]= -2;    B[98][97]= 2+(0.1*f[99])/pow(h[99],-1/3);        B[98][98]= -1+ (0.005)/pow(h[99],-1/3)+ (0.1*f[98])/pow(h[99],-1/3)-(0.2*f[99])/pow(h[99],-1/3);            B[98][197] = (0.1*f[99]*f[98]*pow(h[99],-2/3)/3) + (0.01*f[99]*pow(h[99],-2/3)/3)-(0.1*pow(f[99],2)*pow(h[99],-2/3)/3);    B[99][0]= pow(M,2)*(-4.48*f[1] + 2.24*f[2]) + (0.0000875*h[2])/pow(h[1],-1/3) - (0.000175)/pow(h[1],-1/3) ;       B[99][1]= pow(M,2)*(2.24*f[1] - 1.12*f[2]);                 B[99][2]= 0;         B[99][3]= 0;              B[99][99]= -0.01 + (0.0000875*f[1]*h[2]*pow(h[1],-2/3)/3) - ( 0.000175*f[1]*pow(h[1],-2/3)/3);     B[99][100]= 0.005 + (0.0000875*f[1])/pow(h[1],-1/3);      B[99][101]= 0;     B[99][102]= 0;      for(i=2; i<=98; i++)        {      B[98+i][i-1]= pow(M,2)*(2.24*f[i+1] - 4.48*f[i] + 2.24*f[i-1] ) + (0.0000875*h[i+1])/pow(h[i],-1/3) - (0.0000875*h[i-1])/pow(h[i],-1/3) ; 	 B[98+i][i-2]= pow(M,2)*(-1.12*f[i+1] + 2.24*f[i] - 1.12*f[i-1]);       B[98+i][i]= pow(M,2)*(-1.12*f[i+1] + 2.24*f[i] - 1.12*f[i-1] );      B[98+i][98+i]= -0.01 + (0.0000875*f[i]*h[i+1]*pow(h[i],-2/3)/3 ) - (0.0000875*f[i]*h[i-1]*pow(h[i],-2/3)/3 );      B[98+i][97+i]= 0.005 - (0.0000875*f[i])/pow(h[i],-1/3) ;      B[98+i][99+i]= 0.005 + (0.0000875*f[i])/pow(h[i],-1/3) ;    }    B[197][97]= pow(M,2)*(-0.0056 - 1.12*f[98] + 1.12*f[99] );     B[197][98]=  pow(M,2)*(0.0056 - 1.12*f[99] + 1.12*f[98] ) + (0.0000875/pow(h[99],-1/3) - (0.0000875*h[98])/pow(h[99],-1/3));        B[197][196]= 0.005 - (0.0000875*f[99])/pow(h[99],-1/3) ;         B[197][197]= -0.01 + (0.0000875*f[99]*pow(h[99],-2/3)/3) - ( 0.0000875*f[99]*h[98]*pow(h[99],-2/3)/3);  
  //for(i=0;i<198;i++) //     for(j=0;j<198;j++) //  { //    ae_int_t w = 198; //    sparsematrix B[i][j]; //    real_1d_array z= "A[i][j]"; //    real_1d_array s[i]; //    sparsesolverreport rep; //    bool isuppertriangle = false; //    sparsesolvesks(B[i][j], w, isuppertriangle, z, rep, s[i]); //} //    printf("%s\n", s[i]);  //    
 
 
   for(i=0;i<198;i++)      for(j=0;j<198;j++)   {         real_2d_array y= "B[i][j]";     ae_int_t n = 198;     bool isupper = false;     real_2d_array z = "A[i][j]";     ae_int_t m = 198;     ae_int_t  info;     densesolverreport rep;     real_2d_array s[i];   smp_spdmatrixsolvem(y, n, isupper, z, m, info, rep, s[i]);     }     printf("%s\n", s[i]);     return 0; } 
					
  
						
					 |