forum.alglib.net

ALGLIB forum
It is currently Sat Dec 21, 2024 5:08 pm

All times are UTC


Forum rules


1. This forum can be used for discussion of both ALGLIB-related and general numerical analysis questions
2. This forum is English-only - postings in other languages will be removed.



Post new topic Reply to topic  [ 1 post ] 
Author Message
 Post subject: Non-linear curve fit using a split gaussian function
PostPosted: Fri Dec 06, 2019 8:19 am 
Offline

Joined: Fri Dec 06, 2019 7:49 am
Posts: 1
I am trying to implement a non-linear curve fit for asymmetric peaks using a split gaussian function. It uses separate variances for the left and right side of the peak (see https://arxiv.org/pdf/1405.4995.pdf).

A symmetric gaussian is straight forward, but I am stuck with implementing the conditional statement of the split function using different variances (c[2] or c[3]) for x<=c[1] and x>c[1], respectively. The code below shows the two sides of the gaussian in the callback, but I don't know how to go about using one for the part of the x array <= c[1], and the other one for x array > c[1].

Any ideas how this can be implemented?
Nic

Code:
#include "stdafx.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "interpolation.h"

using namespace alglib;
void function_cx_1_func(const real_1d_array &c, const real_1d_array &x, double &func, void *ptr)
{
    // c[0]: scale factor
    // c[1]: center position mu
    // c[2]: variance left side (sigma1)
    // c[3]: variance right side (sigma2)

    // for x <= c[1]:
    func = c[0]*sqrt(2.0/M_PI)/(c[2]+c[3])*exp(-0.5*pow(x[0]-c[1],2.0)/pow(c[2],2.0));

    // for x > c[1]:
    func = c[0]*sqrt(2.0/M_PI)/(c[2]+c[3])*exp(-0.5*pow(x[0]-c[1],2.0)/pow(c[3],2.0));
}

int main(int argc, char **argv)
{
    real_2d_array x = "[[0.0],[0.1],[0.2],[0.3],[0.4],[0.5],[0.6],[0.7],[0.8],[0.9],[1.0],[1.1],[1.2],[1.3],[1.4],[1.5]]";
    real_1d_array y = "[0.00, 0.00, 0.01, 0.05, 0.12, 0.31, 0.63, 1.10, 1.65, 2.10, 2.28, 1.38, 0.31, 0.03, 0.00, 0.00]";
    real_1d_array c = "[1.0, 1.0, 0.25, 0.10]";
    double epsx = 0.000001;
    ae_int_t maxits = 0;
    ae_int_t info;
    lsfitstate state;
    lsfitreport rep;
    double diffstep = 0.0001;

    lsfitcreatef(x, y, c, diffstep, state);
    lsfitsetcond(state, epsx, maxits);
    alglib::lsfitfit(state, function_cx_1_func);
    lsfitresults(state, info, c, rep);
}


Top
 Profile  
 
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 1 post ] 

All times are UTC


Who is online

Users browsing this forum: No registered users and 17 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group