forum.alglib.net http://forum.alglib.net/ |
|
exponentialintegralei(x) http://forum.alglib.net/viewtopic.php?f=2&t=343 |
Page 1 of 1 |
Author: | alglib [ Fri Apr 15, 2011 2:14 pm ] |
Post subject: | exponentialintegralei(x) |
How great x can be? I try Ei(100)=2.7e41. It is wrong. How ti calculate such great numbers7 |
Author: | Doug Jenkins [ Sat Apr 16, 2011 12:08 am ] |
Post subject: | Re: exponentialintegralei(x) |
Why do you think it is wrong? Wolfram Alpha gives the same result. |
Author: | alglib [ Sat Apr 16, 2011 2:43 am ] |
Post subject: | Re: exponentialintegralei(x) |
Sorry. Misunderstood. |
Author: | alglib [ Sat Apr 16, 2011 10:37 am ] |
Post subject: | Re: exponentialintegralei(x) |
How can I calculate big values of thid functions? x Ei(x,1) 1.670000e+002 1.768184e-075 1.680000e+002 6.466293e-076 1.690000e+002 2.364822e-076 1.700000e+002 8.648816e-077 1.710000e+002 -1.000000e+000 1.720000e+002 -1.000000e+000 1.730000e+002 -1.000000e+000 1.740000e+002 -1.000000e+000 |
Author: | Doug Jenkins [ Sun Apr 17, 2011 11:04 pm ] |
Post subject: | Re: exponentialintegralei(x) |
alglib wrote: How can I calculate big values of thid functions? x Ei(x,1) 1.670000e+002 1.768184e-075 1.680000e+002 6.466293e-076 1.690000e+002 2.364822e-076 1.700000e+002 8.648816e-077 1.710000e+002 -1.000000e+000 1.720000e+002 -1.000000e+000 1.730000e+002 -1.000000e+000 1.740000e+002 -1.000000e+000 170 seems to be the Alglib limit for this function. The equivalent function in the Xnumbers package goes up to 701. |
Page 1 of 1 | All times are UTC |
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group http://www.phpbb.com/ |