| 
					
						 Dear everyone , dear Sergey :
  I have a multi parameter function that needs optimization,
  The least squares problem, where F (x, y, z)=ax+by+cz, with coefficients a, b>>c, results in the gradient of z being much smaller than that of a and b. The range of parameters is approximately x [2-5] y [1-3] z [-0.08~0.08]. How to dynamically adjust gradients to improve the accuracy of z
  Expand the derivative of z to adjust the scale to be roughly the same as the derivative of x and y?
 
 
          minbleicstate state; 	minbleicreport rep; 	double epsg = epsg0 ;  	double epsf = epsf0 ;  	double epsx = epsx0 ;  	ae_int_t maxits =   1000 ; // 
      minbleiccreate(x, state);     minbleicsetbc(state, bndl, bndu);
      //==Is this the order of magnitude for setting parameters related to their coefficients? Is the usage correct here for me? 	//real_1d_array xScale; 	//int LenS = x.length(); 	//xScale.setlength(pn); 	//int nt_num = LenS/5; 	//for(int j=0;j<nt_num;j++){ 	//	xScale[0 * nt_num + j] =  100; 	//	xScale[1*nt_num+j] = 100 ; 	//	xScale[2 * nt_num + j] = 1; 	//	xScale[3*nt_num+j] = 0.5 ; 	//	xScale[4*nt_num+j] = 0.5 ; 	//} 	//minbleicsetscale(state,xScale); 	//minbleicsetprecscale(state); 	     minbleicsetcond(state, epsg, epsf, epsx, maxits);     //minbleicoptguardsmoothness(state);     alglib::minbleicoptimize(state, func_grad,NULL,ptr);
  	//minlmsetacctype(state,1)     const xparams _params = alglib::xdefault;     minbleicrestartfrom(state,x,_params);     minbleicresults(state, x, rep); 
					
  
						
					 |